Predicting and Alerting Maternal Emotional States during Pregnancy, Nuvo Cares

Lior Nattiv

Data Science Fellows February 2021 Cohort



A regression/classification task with multiple target variables for time-series and tabular data based on the company’s remote pregnancy monitoring solution.

The project comprised of data preparation, data exploration, models building and performance evaluation with Various ML and Auto-ML libraries.


  1. Doing very independent work.
  2. Getting to know and learn new Auto-ML libraries and how to work with them


  1. Very good results with baseline and auto-ml models (Mostly sensitivity and specificity)
  2. Managed to test many different models during the process
  3. Managed to take one of the top models found via auto-ml process and improve results by using the same model from Sk-learn’s algorithms

Future project development 

Please describe possible further development of the project following your project phase.

  • More sample data will increase reliability of results, and will be able to help build much more efficient regression models (which was not possible with the current data of the project)
  • Building a Deep-Learning neural network with raw data. It was planned, but there was not enough time to do so.
  • Testing additional Auto-ML libraries.

Share this post

Share on facebook
Share on twitter
Share on linkedin
Share on email